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Abstract. The phenomenon of spontaneous symmetry breaking admits a physical interpretation in terms
of the Bose condensation process of elementary spinless quanta. In this picture, the broken-symmetry
phase emerges as a real physical medium, endowed with a hierarchical pattern of scales, supporting two
types of elementary excitations for k → 0: a massive energy branch Ea(k) → MH , corresponding to the
usual Higgs boson field, and a collective gapless branch Eb(k) → 0. This is similar to the coexistence of
phonons and rotons in superfluid 4He that, in fact, is usually considered the condensed-matter analog of
the Higgs condensate. After previous work dedicated to the properties of the gapless phonon branch, in
this paper we use quantum hydrodynamics to propose a physical interpretation of the massive branch. On
the base of our results, MH coincides with the energy gap for vortex formation and a massive Higgs boson
is like a roton in superfluid 4He. Within this interpretation of the Higgs particle, there is no naturalness
problem since MH remains a naturally intermediate, fixed energy scale, even for an ultimate ultraviolet
cutoff Λ → ∞.

1 Introduction

The idea of a spontaneously broken phase as a “conden-
sate” is now widely accepted. For instance, in the physically
relevant case of the standard model, the situation can be
summarized saying [1] that “What we experience as empty
space is nothing but the configuration of the Higgs field
that has the lowest possible energy. If we move from field
jargon to particle jargon, this means that empty space is
actually filled with Higgs particles. They have Bose con-
densed.”

Here, by “Bose condensation” one means the phenome-
non of spontaneous particle creation in the same quantum
state (k = 0 in some reference frame) from the empty vac-
uum |0〉 of perturbation theory. In this way, the translation
from “field jargon to particle jargon”, amounts to estab-
lish a well-defined functional relation (see [2] and Sect. 2)
n = n(φ2) between the average density of scalar quanta, the
“phions”, and the average value of the scalar field 〈Φ〉 = φ.
Thus, Bose condensation is just a consequence of the min-
imization condition of the effective potential Veff(φ). This
has absolute minima at some values φ = ±v �= 0 for which
n(v2) = n̄ �= 0 [2].

Of course, in order for this picture to be consistent,
spontaneous symmetry breaking should occur for physi-
cal (i.e. real and non-negative) values of the phion mass
mΦ. In other words, Bose condensation requires the phase
transition in (cutoff) λΦ4 theories to be first order. While
in the presence of gauge bosons this can be shown per-
turbatively [3], the use of perturbation theory in a pure
λΦ4 theory leads to contradictory results between even and

odd orders [4]. Therefore, one has to analyze the effective
potential beyond perturbation theory. By relying on the
assumed exact “triviality” property of the theory in 3 + 1
space-time dimensions [5], one is driven to consider the
class of “triviality compatible” approximations [2, 6, 7] to
the effective potential, say Veff(φ) = Vtriv(φ). This includes
the one-loop potential, the gaussian and post-gaussian [8]
calculations of the Cornwall–Jackiw–Tomboulis [9] effec-
tive potential for composite operators, i.e. all approxima-
tions where the fluctuation field is governed by an effec-
tive quadratic Hamiltonian. In all such cases, the lowest
energy state of the massless theory at mΦ = 0 corresponds
to a broken-symmetry phase as first shown in [10] for the
gaussian approximation. Therefore the phase transition,
occurring earlier for small positive values of mΦ, is first
order. However, there is a subtlety since it corresponds
to an infinitesimally weak first-order phase transition. In
fact, it is first order for any finite ultraviolet cutoff Λ but
becomes asymptotically second order1 in the continuum
limit Λ → ∞.

In any case, for all finite values of Λ, a particle-gas
picture of the underlying scalar system is possible. This
can be formulated in terms of two basic quantities: the
equilibrium phion density n̄ and the phion–phion scattering
length a,

a =
λ

8πmΦ
, (1)

1 In the presence of gauge bosons, e.g. in scalar electrodynam-
ics, Vtriv(φ) predicts a first-order transition as well, consistently
with the perturbative Coleman–Weinberg analysis; see [11]
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defined, in the limit of zero-momentum scattering, from the
dimensionless scalar self-coupling λ and the phion mass.

As shown in [2], these two quantities combine to produce
all relevant length scales of the system,

a � 1√
n̄a

� 1
n̄a2 , (2)

that decouple for an infinitely dilute system where n̄a3 → 0.
In this situation, which corresponds to approaching the
continuum limit of quantum field theory [2], one discov-
ers an unexpected result: the hierarchical nature of the
scalar condensate.

At the same time, a particle-gas picture of the broken-
symmetry phase raises several questions. For instance, in
condensed media the properties of the system over vastly
different scales are described by different branches of the
energy spectrum. Are there similar transitions in the scalar
condensate? Also, what about the coexistence of exact
Lorentz covariance and vacuum condensation in effective
quantum field theories? Can the violations of locality, at
the energy scale fixed by the ultraviolet cutoff, induce non-
Lorentz covariant modifications of the infrared energy spec-
trum that depends on the vacuum structure [12]?

To indicate this type of infrared–ultraviolet connec-
tion, originating from vacuum condensation in effective
quantum field theories, Volovik [13] has introduced a very
appropriate name: re-entrant violations of special relativ-
ity in the low energy corner. These occur in a small shell
of three-momenta, say |k| < δ, that only vanishes in the
strict local limit where Λ → ∞ and an exact Lorentz co-
variant energy spectrum is re-obtained in the whole range
of momenta.

By denoting MH as the typical energy scale associated
with the Lorentz covariant part of the energy spectrum,
the “re-entrant” nature of the violating effects means that
O

(
δ

MH

)
vacuum-dependent corrections are equivalent to

O (
MH

Λ

)
effects (see below). The 1/Λ terms, that have

always been neglected when discussing [14] how Lorentz
covariance emerges in effective theories when removing the
ultraviolet cutoff, although infinitesimally small, can play
an important role over distances larger than Λ/M2

H , i.e.
infinitely larger than the typical elementary particle scale
ξH = 1/MH .

As discussed in [15–17], the basic ingredient to under-
stand the nature of the “re-entrant” effects in the scalar
condensate consists in a purely quantum field-theoreti-
cal result: the two-valued nature of the connected zero-
four-momentum propagator G−1(k = 0) in the broken
phase [18,19]. In fact, besides the well-known massive so-
lution G−1

a (k = 0) = M2
H , one also finds G−1

b (k = 0) = 0.
The b-type of solution corresponds to processes where

absorbing (or emitting) a very small three-momentum k →
0 does not cost any finite energy. This situation is well
known in a condensed medium, where a small three-momen-
tum can be coherently distributed among a large number of
elementary constituents, and corresponds to the hydrody-
namical regime of density fluctuations whose wavelengths
2π/|k| are larger than rmfp, the mean free path for the
elementary constituents.

In this sense, the situation is very similar to superfluid
4He, where the observed energy spectrum is due to the pe-
culiar transition from the “phonon branch” to the “roton
branch” at a momentum scale |k0| where Ephonon(k0) ∼
Eroton(k0). The analog for the scalar condensate amounts
to an energy spectrum with the following limiting behav-
iors:
(i) E(k) → Eb(k) ∼ cs|k| for k → 0; (ii) E(k) → Ea(k) ∼
MH + k2

2MH
for |k| � δ, where the characteristic momentum

scale δ � MH , at which Ea(δ) ∼ Eb(δ), marks the tran-
sition from collective to single-particle excitations. This
occurs for

δ ∼ 1/rmfp, (3)

where [20,21]

rmfp ∼ 1
n̄a2 (4)

is the phion mean free path, for a given value of the phion
density n = n̄ and a given value of the phion–phion scat-
tering length a. In terms of the same quantities, one also
finds (see [2] and Sect. 2)

M2
H ∼ n̄a, (5)

giving the anticipated trend of the dimensionless ratios
(Λ ∼ 1/a)

δ

MH
∼ MH

Λ
∼

√
n̄a3 → 0, (6)

in the continuum limit where a → 0 and the mass scale n̄a
is held fixed2.

Now, deducing the detailed form of the energy spectrum
that interpolates between Ea(k) and Eb(k) is a formidable
task. To have an idea, the same problem in superfluid
4He, after more than fifty years and despite the efforts
of many theorists, notably Landau and Feynman, has not
been solved in a satisfactory way. Therefore, by taking
into account the above remark, one can simply approxi-
mate [15–17] the expansion of the scalar field in the broken
phase by two separate branches as (phys is for “physical”)3

Φphys(x) = vR + h(x) +H(x), (7)

with

h(x) =
∑
|k|<δ

1√
2VEk

[
h̃kei(k·x−Ekt)+ (h̃k)†e−i(k·x−Ekt)

]
,

(8)
and
H(x) =

∑
|k|>δ

1√
2VEk

[
H̃kei(k·x−Ekt)+ (H̃k)†e−i(k·x−Ekt)

]
,

(9)
2 In connection with the relation (6) M2

H ∼ δΛ, notice the
formal analogy with models [22] containing extra space-time
dimensions with a “large” compactification size Rc = O(1) mm.
In this case, in fact, by introducing the electroweak scale MEW,
the Planck scale MPlanck and Mc ≡ 1/Rc, one gets M2

EW ∼
McMPlanck

3 By “physical” we mean that the normalization of the vac-
uum field vR is such that the quadratic shape of Veff(φR) at
φR = vR is precisely given by the physical Higgs mass M2

H
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where V is the quantization volume and Ek = cs|k| for
|k| < δ while Ek =

√
k2 +M2

H for |k| > δ. Also, csδ ∼
MH .

Equations (7)–(9) replace the more conventional rela-
tions

Φphys(x) = vR +H(x), (10)

where

H(x) =
∑
k

1√
2VEk

[
H̃kei(k·x−Ekt) + (H̃k)†e−i(k·x−Ekt)

]
,

(11)
with Ek =

√
k2 +M2

H . Equations (10) and (11) are re-
obtained in the limit δ

MH
∼ MH

Λ → 0 where the wave-
lengths associated to h(x) become infinitely large in units
of the physical scale set by ξH = 1/MH . In this limit, where
for any finite value of k the broken phase has only massive
excitations, one recovers an exactly Lorentz covariant the-
ory.

Now, as anticipated, the interpretation of the gapless
branch in terms of density fluctuations places no particular
problem [15–17]. In fact, “Any quantum liquid consisting
of particles with integral spin (such as the liquid isotope
4He) must certainly have a spectrum of this type. . . In
a quantum Bose liquid, elementary excitations with small
momentak (wavelengths large compared with distances be-
tween atoms) correspond to ordinary hydrodynamic sound
waves, i.e. they are phonons. This means that the energy
of such quasi-particles is a linear function of their mo-
mentum” [23]. In this sense, a superfluid vacuum provides
for k → 0 a universal picture. This result does not de-
pend on the details of the short-distance interaction and
even on the nature of the elementary constituents. For
instance, the same coarse-grained description is found in
superfluid fermionic vacua [24] that, as compared to the
Higgs vacuum, bear the same relation as superfluid 3He
has to superfluid 4He.

On the other hand, a full analogy with 4He would also
require one to establish the interpretation of the massive
branch for |k| � δ as a “roton”, i.e. in terms of a suitable
vortical motion in the superfluid, and this is by no means
obvious. For instance, Landau’s roton spectrum

Eroton(k) = ∆+
k2

2µ
, (12)

depends on two parameters ∆ and µ that, in superfluid
4He, are vastly different. In fact (in units � = c = 1, where
∆ and µ have the same physical dimensions), one finds∆ ∼
7 · 10−4 eV and µ ∼ 6 · 108 eV while Ea(k) =

√
k2 +M2

H
depends on a single mass parameter MH . Under which
conditions can a superfluid medium exhibit rotons with
∆ = µ? Moreover, even if ∆ = µ, does this value agree
with the Higgs mass parameter MH obtained in quantum
field theory?

The answer to this type of questions can only be ob-
tained by combining a field-theoretical description of the
condensation phenomenon with the basic ingredients of
quantum hydrodynamics. This analysis represents the main

content of this paper and will be presented in the follow-
ing. In Sect. 2, we shall first review the formalism of [2]
with the hierarchical pattern of scales that is established
in the scalar condensate. Further, in Sect. 3, we shall use
the formalism of quantum hydrodynamics and discuss the
interpretation of the massive branch as a roton. Finally,
Sect. 4 will contain a summary together with other possible
consequences of our approach.

2 The Higgs condensate
and a hierarchy of scales

We shall now first resume the main results of [2] in the
case of a one-component λΦ4 theory, a system where the
condensing quanta are just neutral spinless particles,
the “phions”.

One starts by quantizing the scalar field Φ(x) in terms
of ak, a†

k, the annihilation and creation operators for the
elementary phions whose “empty” vacuum state |0〉 is de-
fined through ak|0〉 = 〈0|a†

k=0.
The phion system is assumed to be contained within a

finite box of volume V with periodic boundary conditions.
There is then a discrete set of allowed modes k. In the
end one takes the infinite-volume limit and the summation
over allowed modes goes over to an integration:

∑
k →

V
∫

d3k/(2π)3. In this way, the scalar field is expressed as

Φ(x) =
∑
k

1√
2VEk

[
akeik·x + a†

ke−ik·x
]
, (13)

where Ek =
√

k2 +m2
Φ, mΦ being the physical, renormal-

ized phion mass.
Bose condensation means that in the ground state there

is an average number N0 of phions in the k = 0 mode, where
N0 is a finite fraction of the total average number N:

N =

〈∑
k

a†
kak

〉
. (14)

At zero temperature, if the gas is dilute, almost all the
particles are in the condensate; N0(T = 0) ∼ N. In fact,
the fraction which is not in the condensate (“depletion”),

D = 1 − N0

N
= O(

√
na3), (15)

is a phase-space effect that becomes negligible for a very
dilute system [25] where

ε =
√
na3 � 1. (16)

In (15) and (16) we have introduced the phion density

n =
N
V
, (17)

and the phion–phion scattering length (1).



300 M. Consoli, E. Costanzo: Quantum-hydrodynamical picture of the massive Higgs boson

Therefore, for a very dilute system, where, to a first
approximation, one neglects the residual operator part of
ak=0, one gets a†

k=0ak=0 ∼ N and so, ak=0 can be identified
with the c-number

√
N (up to a phase factor). In this way

φ = 〈Φ〉 =
1√

2VmΦ

〈(a†
k=0 + ak=0)〉 ∼

√
2N

VmΦ
, (18)

or
n(φ2) ∼ 1

2mΦφ
2. (19)

With this identification, setting a†
k=0 = ak=0 =

√
N is

equivalent to shifting the quantum field Φ by a constant
term φ. Further, using (19), the energy density E = E(n)
can be translated into the effective potential

Veff(φ) = E(n). (20)

Now, by exploring the limit mΦ → 0 in the class of “triv-
iality compatible” approximations to the effective poten-
tial [2,6,7] one discovers non-trivial absolute minima φ =
±v �= 0 of Veff(φ) = Vtriv(φ) and Bose condensation with
an average density n̄ = n(v2).

The basic relations of the broken phase are

M2
H ∼ λv2 ∼ n̄a, (21)

and
m2

Φ ∼ λ2v2 ∼ ε2n̄a. (22)

The key ingredient in understanding why the phase transi-
tion occurs for a value ofmΦ that is still positive consists in
the observation [2] that the phion–phion interaction is not
always repulsive. Besides the contact +λδ(3)(r) potential
there is an induced attraction −λ2 e−2mΦr

r3 from ultraviolet-
finite parts of higher order graphs (see also [26]) that, dif-
ferently from the usual ultraviolet divergences, cannot be
re-absorbed into a standard redefinition of the tree-level
coupling. For small values of λ and for sufficiently small
values of mΦ the corresponding graphs, when taken into
account consistently in the effective potential, can com-
pensate for the effects of both the short range repulsion
and of the non-zero phion mass. In this situation, the per-
turbative empty vacuum state |0〉, although locally stable,
is not globally stable and the lowest energy state becomes
a state with a non-zero density of phions that are Bose
condensed in the zero-momentum state.

We emphasize that this weakly first-order scenario of
symmetry breaking is discovered in a class of approxima-
tions to the effective potential: just those that are consistent
with the assumed exact “triviality” property of the theory
in 3 + 1 space-time dimensions [5]. In any case, it can be
objectively tested against the standard picture based on
a second-order phase transition. To this end one can run
numerical simulations near the phase transition region and
compare the predictions of [6,7] with the conventional ex-
isting two-loop or renormalization-group-improved forms
of the effective potential. When this is done, the quality
of the fits to the existing lattice data [27,28] favors unam-
biguously the first-order scenario of [2, 6, 7].

Let us now consider the range of momenta associated
with the two different branches of the energy spectrum.
In condensed matter, the transition between the acous-
tic branch and the single-particle spectrum corresponds
to their matching at a momentum scale set by the in-
verse mean free path for the elementary constituents. As
anticipated in the Introduction, in the scalar condensate
the matching condition corresponds to a momentum scale
δ � MH where Ea(δ) ∼ Eb(δ) or

csδ ∼
√
δ2 +M2

H ∼ MH +
δ2

2MH
, (23)

with δ ∼ 1
rmfp

, rmfp being the phion mean free path for
n = n̄ in (4).

Now, the scattering length a can be used to define a
far ultraviolet scale:

Λ ≡ 1/a. (24)

up to which phions can be treated as “hard spheres”. Us-
ing (3), (4), (21) and (23), this yields

t =
Λ

MH
∼

√
1
n̄a3 , (25)

and
1
cs

∼ δ

MH
∼

√
n̄a3. (26)

Therefore, in the continuum limit where t → ∞ one gets
an infinitely dilute Higgs condensate where ε =

√
n̄a3 → 0

and the hierarchy of scales

δ � MH � Λ, (27)

is related as in (6).
Finally, by using (1), the condition for spontaneous

symmetry breaking (22) can also be expressed as

mΦ ∼ n̄a2 ∼ 1
rmfp

, (28)

so that the phion mean free path in the condensate is of
the same order as the phion Compton wavelength 1/mΦ.

Notice that the order of magnitude of the sound veloc-
ity,

cs ∼ MH

δ
∼ Λ

MH
∼ 1
ε
, (29)

is much larger than unity (in units of the light velocity
c = 1). Actually, cs must diverge in the continuum limit
where Lorentz covariance becomes exact [15]. In this limit,
where the vacuum acquires an infinite rigidity, the conden-
sate becomes incompressible and the massive branch of the
energy spectrum remains valid down to k = 0.

The presence of superluminal sound in the scalar con-
densate has different motivations. First of all we observe
that, on general grounds, “. . . it is an open question whether
cs
c remains less than unity when non-electromagnetic forces
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are taken into account” [29]. For this reason, several au-
thors [30–32] have considered the possibility of media whose
long-wavelength compressional modes for k → 0 have
phase and group velocity E

|k| = dE
d|k| = cs > c.

This possibility depends on the approximate nature of
locality in cutoff-dependent quantum field theories where
the elementary quanta are treated as “hard spheres”. In
this case, in fact, a hard-sphere radius is known [33] to imply
a superluminal propagation within the sphere boundary.
Now, in the perturbative empty vacuum state (with no con-
densed quanta) such superluminal propagation is restricted
to very short wavelengths, smaller than the inverse ultra-
violet cutoff. However, in the condensed vacuum, the hard
spheres can “touch” each other so that the actual propaga-
tion of density fluctuations in a hard-sphere system might
take place at a superluminal speed. This intuitive idea is
at the base of the “macroscopic” violations of locality dis-
cussed in [30] (and of the “re-entrant” violations of special
relativity in the low energy corner [13] mentioned above).

In some cases, superluminal sound is known to arise [31]
when a large negative bare mass and a large positive self-
energy combine to produce a very small physical mass, just
the situation expected for the quanta of the scalar conden-
sate. In this way, the physical origin of the superluminal
sound is traced back to the asymmetric role of mass renor-
malization: it subtracts out self-interaction energy without
altering the tree-level interparticle interactions that con-
tribute to the pressure.

On the other hand, following [15, 21], superluminal
sound is also consistent with the equation of state of a
perfect fluid whose energy density has a minimum at some
given value of the particle density, as it happens in the
scalar condensate. Just for this reason, near the minimum,
long-wavelength density fluctuations represent nearly in-
stantaneous effects that can propagate at arbitrarily large
speed. In this sense, the scalar condensate rensembles an
elastic medium near the incompressibility limit where the
Poisson ratio ν → 1/2 and the propagation speed of the
longitudinal waves of dilatation diverges in units of the
propagation speed of the transverse waves of distortion [16].

Summarizing the previous results, we find that in the
local limit of the theory, where Λ/MH → ∞, one also finds
δ/MH → 0 so that the energy spectrum E(k) reduces
to Ea(k) =

√
k2 +M2

H in the whole range of |k|. In the
cutoff theory, however, one should expect infinitesimal de-
viations in an infinitesimal region of three-momenta. For
instance, assuming Λ = 1019 GeV and MH = 250 GeV,
a scale δ ∼ M2

H

Λ ∼ 10−5 eV, for which δ
MH

∼ 4 · 10−17,
might well represent the physical realization of a formally
infinitesimal quantity. If this were the right order of mag-
nitude, the collective density fluctuations of the Higgs vac-
uum described byEb(k) have wavelengths> 2π

δ , thus rang-
ing from about a centimeter up to infinity [15–17].

On the other hand, for |k| � δ, the excitation spectrum
describes single-particle states of mass MH ∼ √

n̄a. In the
following section, we shall show that these states can be
interpreted as elementary excitations associated with a
vortical motion.

3 The “roton” picture of the massive branch

In his theory, Landau suggested that in a superfluid medium
there must be elementary vortex excitations, the “rotons”,
whose energy has the form of (12). In his original pa-
pers [34], Landau did not work out an explicit derivation
of (12). This was, however, deduced subsequently by Zi-
man [35] whose formalism we shall briefly resume in the
following (for the convenience of the reader we shall adopt
in this section the same notation as [35]).

Ziman’s starting point is the form of the Hamiltonian
density of a fluid,

H =
1
2
ρu2 + ρW (ρ), (30)

where ρ is the mass density and W the internal energy
whose mimimum is obtained for ρ ≡ ρ̄ . The fluid velocity

u = −∇ϕ− i
2ρ

(Ψ∗∇Ψ − Ψ∇Ψ∗), (31)

is expressed in terms of the three Clebsch potentials [36–38]
ϕ, Ψ and Ψ∗. Notice that, although the fluid is described in
terms of the four-component field (ρ, ϕ, Ψ, Ψ∗), there are
no fundamental “charges” and all dynamical effects derive
from the possible states of motion of the fluid.

In quantum hydrodynamics (ρ, ϕ) and (Ψ, Ψ∗) are pairs
of canonically conjugated variables, i.e.

[ρ(r), ϕ(r′)] = iδ3(r − r′), (32)

and
[Ψ(r), Ψ∗(r′)] = δ3(r − r′), (33)

all other commutators being zero. In this way, one obtains
Landau’s relations for the commutators of the velocity com-
ponents:

[ux(r),uy(r′)] =
1
iρ
δ3(r − r′)ζz, (34)

where
ζ = ∇ × u (35)

is the vorticity.
In the incompressibility limit, where ρ = ρ̄ and the

phase ϕ are constant throughout the volume of the fluid,
the fluid Hamiltonian density reduces to its “roton” part

Hroton = − 1
8ρ̄

(Ψ∗∇Ψ − Ψ∇Ψ∗)2. (36)

In a cubic box of volume V, one can expand in plane waves

Ψ =
1√
V

∑
k

bke+ik·r Ψ∗ =
1√
V

∑
k

b∗ke−ik·r, (37)

with
[bk, b∗l ] = δkl, (38)
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so that by integrating the Hamiltonian density over the
whole volume one gets quadratic b∗kbk terms. These can be
used to define a free-roton Hamiltonian

H(0)
roton =

1
8ρ̄V

∑
kl

(k2 + l2)b∗kbk, (39)

that, after converting the discrete sum into an integral,
gives finally

Eroton(k) =
1

8ρ̄

∫
d3q

(2π)3
(k2 + q2). (40)

Equation (40) is formally divergent, so that, to extract
the relevant values of ∆ and µ in (12), one has to find a
suitable cutoff momentum for the single-roton excitations,
say |q| = qmax. If this is done, we obtain

∆ =
q5max

80π2ρ̄
(41)

and

µ =
24π2ρ̄

q3max
. (42)

As a consequence of the introduction of qmax, the uncer-
tainty associated with any cutoff procedure will only allow
an order of magnitude estimate to be made of∆ and µ and
of the regime of parameters associated with the Lorentz
covariant condition ∆ = µ4.

To obtain an estimate of qmax, we observe that using the
operators b∗k and bk one can construct the roton Fock space
labelled byNk, the eigenvalue of the roton number operator
b∗kbk, the single-roton states corresponding to Nk = 1.
Now, by computing the value of the vorticity vector in a
single-roton state, one gets the idea of the roton “. . . as a
steady rotational motion of the fluid, capable of moving
as a “vortex” through the liquid” [35].

This observation arises by inspection of the single-
roton wave functions expressed in cylindrical co-ordinates
(r, θ, z). In this case, by introducing the squared transverse
momentum κ2 = k2

x + k2
y, the azimuthal quantum number

ν, and the z-component of the momentum kz, one finds
the equivalent form for the free-roton Hamiltonian

H(0)
roton (43)

=
1

8ρ̄V

∑
κ,κ′,ν,ν′,kz,k′

z

(κ2 + k2
z + (κ′)2 + (k′

z)
2)b∗κνkz

bκνkz
,

whose single-particle eigenvalues

Eκνkz = ∆+
κ2 + k2

z

2µ
(44)

4 An effective cutoff in momentum space has been widely used
in the literature before the introduction of the idea of renormal-
ization. For instance Bethe’s [39] and Welton’s [40] treatments
of the Lamb shift, both based on the choice qmax = mec, cap-
ture the essential physics and the exact order of magnitude
of the effect although it is hard to render them into a fully
satisfactory calculation.

have the same ∆ and µ as in (41) and (42) with q2max =
(κ2 +k2

z)max. This can be understood by first noticing that
the quantities ∆ and µ can be expressed in terms of the
number of quantum states with |q| ≤ qmax, say g(qmax),
as

∆ ∼ q2max
g(qmax)
ρ̄V

(45)

and
µ ∼ ρ̄V

g(qmax)
. (46)

Further, using the results of [41], one finds the same lead-
ing behavior

g(qmax)
V

∼ q3max

6π
(47)

by switching from cubical to cylindrical geometry. Finally,
averaging over all possible orientations gives (k2

x)max =
(k2

y)max = (k2
z)max and one obtains q2max ∼ 3

2 (κ2)max.
In cylindrical coordinates, the single-particle wave func-

tions can be expressed as

ψ = ψκ,ν,kz (r, θ, z) = NJν(κr)eiνθeikzz, (48)

where Jν(κr) are Bessel functions and N is a normalization
factor. In this case, one finds ur = uz = 0 with the only
non-vanishing component of the velocity being

uθ =
1

2ir

(
ψ∗ ∂ψ

∂θ
− ψ

∂ψ∗

∂θ

)
= N 2 νJ

2
ν (κr)
r

. (49)

Analogously, ζr = ζθ = 0 and the only non-zero component
of the vorticity is

ζz =
1
r

∂(ruθ)
∂r

= N 2 ν

r

d
dr
J2

ν (κr). (50)

By introducing the vortex radius R as the value at which
uθ(r = R) = 0, and using the relation∫ R

0
rdrJ2

ν (κr) =
R2

2
J2

ν+1(κR) (51)

(with Jν(κR) = 0), we can set finally N =
√

2
R

1
Jν+1(κR) .

Therefore, a reasonable value of the cutoff momentum
for single-roton states is

qmax ∼ κmax ∼ 1
Rmin

, (52)

where Rmin denotes the minimum transverse size of the
thinnest vortices that can be established in the superfluid.
These are the so-called “vortex filaments”, whose trans-
verse size can be obtained from [42] in terms of the particle
density n and of the scattering length a. In this case, for
a dilute (“almost ideal”) Bose condensate, the filament
“core” is

Rmin ≡ rcore ∼ 1√
na
, (53)

so that, for n = n̄, we find

qmax ∼ 1
rcore

∼ √
n̄a. (54)
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In this way, assuming for the mass of the fluid constituents
the same equation, (28), as established for the quanta of
the scalar condensate, one finds

ρ̄ = mΦn̄ ∼ n̄2a2, (55)

so that replacing relations (54) and (55) by (41) and (42),
one gets the order of magnitude estimate

∆ ∼ µ ∼ √
n̄a. (56)

Therefore, by comparing with (21), we have identified the
relativistic regime ∆ = µ = MH foreseen in the Intro-
duction. In fact, MH coincides with the energy gap ∆ for
vortex formation in a superfluid medium possessing the
same density and the same type of constituents as the
scalar condensate.

More generally, it is interesting to compare the possible
regimes of a Bose superfluid, made up of particles with mass
m, in terms of the two dimensionless parameters

x =
m

na2 , (57)

and
ε =

√
na3. (58)

In terms of x, using (54) for arbitrary n, (41) and (42) give

∆ ∼
√
na

x
(59)

and
µ ∼ x

√
na ∼ x2∆, (60)

so that, as anticipated, the Lorentz covariant condition
∆ ∼ µ corresponds to x ∼ 1.

Notice that the momentum δ ∼ 1/rmfp ∼ na2, related
to the transition from the phonon branch to the roton-
like excitations of (12), can be used to obtain the sound
velocity from the relation

csδ ∼ ∆, (61)

so that (in units of c)

cs ∼ 1
xε
. (62)

Using (60), the non-relativistic limit, where ∆ � µ, is
seen to correspond to very large values of x such that also
1 � xε. In this case, the sound velocity becomes

cs ∼ 1
xε

∼
√
na

m
� 1, (63)

which is the Lee–Yang–Huang result for a dilute hard-
sphere Bose gas [43]. On the other hand, a Lorentz covariant
form of the massive branch requires a value x ∼ 1 in (60).
This, when replaced in (62), produces the anticipated vastly
superluminal sound velocity (29),

cs ∼ 1/ε, (64)

that diverges in the limit where ε → 0 and the scale ∆ ∼
µ ∼ √

na = is kept fixed.
The above relations can also be compared with super-

fluid 4He. Although this is not a dilute system (with typ-
ical values a ∼ 2.7 · 10−8 cm and n ∼ 1023 cm−3, one gets
ε ∼ 1.4), we find, nevertheless, a good agreement with
our picture. In fact, using the experimental values [44]
(µ)exp = 0.16mHe and (∆)exp = 7.4 · 10−4 eV in (60) one
can obtain an experimental value of x, say

xexp ≡
√

(µ)expc2

(∆)exp
∼ 106, (65)

that, if used in (62), produces a value cs ∼ 0.7 · 10−6, in
good agreement with the experimental result for the sound
velocity (cs)exp = 239 m/s [44]. Finally, the theoretical
input prediction from (57)

xth ≡ mHe

na2 ∼ 3 · 106, (66)

is also in fairly good agreement with the experimental re-
sult (65), thus confirming the overall consistency of our pic-
ture.

4 Summary and outlook

Taking into account the two-valued nature [18, 19] of the
zero-four-momentum connected propagator in the broken
phase, one gets the idea of a true physical medium that
contains, for k → 0, two types of excitations: a massive
one, whose energy Ea(k) → MH and that corresponds to
the usual Higgs boson field, and a gapless one whose energy
Eb(k) → 0. The overall picture is similar to the coexistence
of phonons and rotons in superfluid 4He that, in fact, is
usually considered the condensed-matter analogue of the
Higgs condensate.

Now, the gapless branch is naturally interpreted in
terms of the collective density fluctuations of the sys-
tem [15–17]. These dominate the physical spectrum for
k → 0 and their wavelengths are larger than rmfp, the
mean free path for the condensed quanta.

On the other hand, the continuum limit of quantum
field theory corresponds to the ideal case of an incom-
pressible fluid so that the massive energy spectrum Ea(k)
extends down to k = 0.

In this paper, following the original Ziman’s [35] ap-
proach and using the formalism of [2], we have proposed the
interpretation of the massive branch as a roton, i.e. as an
elementary excitation that, differently from the phonons
associated with the irrotational motions of the superfluid,
arises in connection with a non-zero (“bulk”) vorticity.
This interpretation requires the energy spectrum (12) to
exhibit values of ∆ and µ such that

∆ ∼ µ ∼ MH ∼ √
n̄a. (67)

In turn, this relation depends on the peculiar condition (28),

mΦ ∼ n̄a2, (68)
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between the massmΦ of the elementary condensing phions,
their equilibrium number density n̄ and their scattering
length a. The relation (68) implies that the phion mean
free path rmfp ∼ 1/(n̄a2) is of the same order as the phion
Compton wavelength 1/mΦ and is naturally found in the
weakly first-order scenario of [2], where the broken phase
is represented as a dilute Bose condensate for which ε =√
n̄a3 � 1, the continuum limit corresponding to ε → 0

with n̄a = fixed.
Of course, it being usual to consider Lorentz covari-

ance as an exact built-in requirement, an energy spectrum
as in (12) with ∆ = µ may seem more or less trivial.
For instance, starting from the original annihilation and
creation operators for the elementary quanta of the un-
physical empty vacuum state |0〉, it is easily discovered
within the standard covariant generalization of the Bogol-
ubov method [2]. However, our analysis shows that there
is an alternative viewpoint. In fact, within quantum hy-
drodynamics the same result is far from being trivial and
is only recovered in the special case (68). In this modified
perspective, a Lorentz covariant massive spectrum corre-
sponds (with some approximations and in a certain range
of wavelengths) to vortex formation in a superfluid medium
possessing a well-defined pattern of scales.

We conclude by observing that the proposed identifi-
cation of the massive Higgs boson as a roton and of MH

with the energy gap for vortex formation in the superfluid
vacuum is not a mere exercise. In fact, in quantum hy-
drodynamics the single-roton states have a natural cutoff
momentum at

qmax ∼ √
n̄a ∼ MH � Λ. (69)

Therefore, accepting our interpretation, the Higgs boson
momentum would be physically cut off at values that are
much smaller than Λ so that MH emerges as a naturally
intermediate, fixed energy scale associated with the con-
densed vacuum. In this sense, by treating the Higgs con-
densate as a real physical medium, one can find a solution
of the so-called naturalness problem without any artifi-
cial fine-tuning of the basic parameters. Such finite-tuning
problems, instead, appear in the standard approach where
the massive Higgs boson is regarded as an ordinary elemen-
tary particle propagating in the vacuum and its maximum
momentum is identified with the ultimate ultraviolet cutoff
Λ of the theory.
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